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ABSTRACT 
A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not 
require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in 
a broad range of dynamical models. !.lie illustrate the main ideas of the technique by inferencing a model of 
five globally and locally coupled noisy oscillators. Specific modiikations of the technique for inferencing hidden 
degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications. 
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1. INTRODUCTION 
Coupled oscillators are ubiquitous in nature. They are used to describe observed phenomena intensively over 
the years in many areas of science and technology including e.g. physics,'>' chemistry and In this 
approach a complex system is charact,erized by projecting it ont,o a. spec5c dynamical model of coupled nonlinear 
oscillators. However: there are no general methods to infer parameters of stochastic nonlinear models from the 
measured time-series data. Furthermore, in a great number of import.ant problems the model is not usually 
known exactly from "first, principles" and one is faced with a rather broad range of possible parametric models 
to consider. In a.ddition, the experimental data. can be extremely skewed, whereby important "hidden" features 
of a model such as coupling coefficients between the oscillators can be very difficult. to extract due to the intricate 
int.erplay between noise and nonlinearity. 

As was point.ed out by McSharry and co-authors,s deterministic inference techniques6 consistently fail to 
yield accurate parameter estimates in the presence of noise. The problem becomes even more complicated when 
both measurement noise as well as intrinsic dynamical noise are present.' Various numerical schemes have 
been proposed recently to deal with different aspects of this inverse 7-12 A standard approach to 
this problem is often based on optimization of a certain cost function (a likelihood function) at the values of 
the model parameters that h& reconstruct the measurements. It can be further generalized using a Bayesian 
formulation of the proble111.7-9 Existing techniques usually employ numerical Monte Carlo techniques for 
coinples optimiza.tion'l or multidimensional integrationg t,asks. Inference results from noisy observations are 
shown t,o be very sensitive to the specific choice of the likelihood function? Consequently, the c o m c t  choice of 
the likelihood function is one of the central questions in the inference of continuous-time noise-driven dynamical 
models considered here. 

In ths paper, we present an efficient technique of Bayesian inference of nonlinear noise-driven dynamical 
models from t,ime-series data t,hat avoids extensive numerical optimization. It also guarantees optimum compen- 
sation of noise-induced errors by invoking the likelihood function in the form of a path integral over the random 
trajectories of the dynamical system. The technique is verified on a broad range of dynamical models including 
system of five globally and locally coupled nonlinear oscillat,ors. 

A specific example of inferencing stochastic nonlinear model from skewed time-series data is considered in the 
context of physiological research. In particular, we refer to the situation when the variability of the cardiovascular 
signals is modelled in terms of coupled nonlinear oscillators.'3-'6 At present there are no met.hods available 
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t o  infer parameters of the nonlinear coupling between oscillators directly from experimental time series data. 
Furthermore, in many situations it is important to perform such inference using univariate time series. This rises 
another important. issue in nonlinear time-series analysis related to the inference of hidden dpamical variables. 
If a technique of inferencing of coupling parameters from hidden dynanlical variables could be found it could 
provide new effective tool for estimation of the state of autonomous nervous cont1-01’~ and risk stratification of 
cardiovascular diseases.’8 The corresponding problem of inference of the coupling parameters of two nonlinear 
oscillators perturbed by noise from univariate time-series data will be considered in this paper. 

The paper is organized as follows. In the Sec. 2 the algorithm is introduced and its main features are 
compared with the results of earlier work. In the Sec. 3 the convergence of the algorithm is analyzed in the case 
of inference of coupled nonlinear stochastic oscillators. A modification of the algorithm that allows inference of 
hidden dynamical variables of two nonlinear coupled oscillators from uniwriate time-series data is considered in 
Sec. 4. 

2. THEORY OF NONLINEAR INFERENCE OF NOISEDRIVEN DYNAMICAL 
SYSTEMS 

Consider N-dimensional dynamicd system described by set of nonlinear Langevin equat,ions 

X(t) = f(x) + c( t )  = f(x) + a<(t), (1) 

where ~ ( t )  is an additive stationary white, Gaussian vector noise process 

(<(t))  = 0, (t(t) E*@’)> = D b( t  - t’), (2) 

characterized by diffusion matrix D. 
TvTre UgiiFfie that the trajectory zit.) uf Liiis sysiern is observed at sequentiai time instants j t k :  k = U,1, . . , , K j  

and a series Y = {yk E y(tc)} thus obtained is related to the (unknown) “true” system states X = {zk = ~ ( t k ) }  

through some conditional PDF po ( Y l X ) .  
The most general approach to dynamical model inference is based on Bayesian framework ( ~ f . ~ ) .  In the 

Bayesian model inference, two distinct PDFs are ascribed to the set of unknown model parameters: the prior  
ppr(M) and the posterior ppost(M lY): respectively representing our state of knowledge about M before and 
after processing a. block of data 3.’. The prior acts as a regularizer, concentrating the para.met.er search to those 
regions of the model spa.ce favored by our expertise and any axailable a.uxiliary information. The two PDFs are 
related to each other via Bayes’ theorem: 

Here l(YlA4). usually termed the lakelzhood, IS the conditional PDF of the measurements Y for a given choice 
M of the dyiiamical model. In practice. ( 3 )  can be applied iteratively using a sequence of data blocks 3.’.Y’, 
etc. The posterior computed from block Y serves as the prior for the next block Y’, etc. For a sufficiently large 
number of observations. ppost(MiY, y’, . . .) is sharply peaked at a certain most probable model M = M*. 

The main efforts in the research on stochastic nonlinear dynamical inference axe focused on constructing the 
likelihood function that compensates noise induced errors and on introducing efficient optimization algorithms 

No closed form expression for the likelihood function that provides optimal compensation of the noise-induced 
errors was introduced so far for continuous systems. The ad hoc likelihood function5 and their generalization to 
the conditional PDF for stochastic trajectories in maps7,’ do not compensate the error in continuous systems, 
since they are missing the main compensating term (see below). The problem of noise-induced errors in inference 
of continuous systems was considered in” and a general approach to constructing corresponding likelihood was 

__ - ~ o u t l i n e d c ~ € € s w e v e k  Lhexjosed form expression for the likelihood that takes into account the leading compensating 
term was not found and instead an ad hoc expression for the likelihood function was used. 
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A common draw back of earlier research is the use of extensive numerical optimization. This problem 
will become increasingly important when complex systems with the large number (hundred or more) of model 
coefficients are investigated. 

In the present paper we introduce a closed form of the likelihood function for continuous systems that provides 
optimal compensation for the noise-induced errors. We also suggest parametrization of the unknown vector field 
that reduces the problem of nonlinear dpamical inference to essentially linear one for a broad class of nonlinear 
dynamical systems. This allows us to  write an efficient algorithm of Bayesian inference of nonlinear noise- 
driven dyiiamical models that avoids extensive numerical optimization and guarantees optimum compensation 
of noise-induced errors. 

In what follows in this section we describe the likelihood function, the parametrization, and the corresponding 
algorithm. 

2.1. The likelihood function 
It mas pointed out in'' the probability density functional for the nonlinear dynamical stochastic system in 
general is not known. Instead one can use the probability density functional for random trajectories in such 
systems. W-e note that the path-integral approach has also proved to be useful in nonlinear filtration of random 
signals (see e.g.lg)in the situations where standard spectral-correlation methods fail. 

Therefore we write the expression for the likelihood in the form of a path integral over the random trajectories 
of the system: 

which relates the dynamical variables x(t) of the system (1) t.o the observations y ( t ) .  Here we choose ti << t o  < 
tK\,t f  so that C does not depend on t,he particular initial and final states x(ti), x(trj. The form of the probability 
functional .FM over the system trajectory x(t)  is determined by the properties of the dynamical noise <(t).2G7 21 

In the following we are focusing on the case of additive and st.atioiiary Gaussian white noise, as indicated 
in (l), (2). We consider a uniform sampling scheme t k  = t o  i- hk, h 3 ( t ~  - t o ) /K  and assume that for each 
traject,ory component zn(t) the measurement error 6 is negligible compared with the fluctuations induced by the 
dynamical noise; tha.t is, c2 << h(D2),,. Consequently, we use p o ( y ! X )  ---f n:=o 6[yk - ~ ( t k ) ]  in (4). Using 
results from2' for F ~ [ x ( t ) ] ?  t.he logarithm of the likelihood (4) t,akes the following form for sufficiently large A- 
(small time step h): 

2 h K-l 

K ---!og!(YlM) = l n d e t D +  2 [ tr&(yk:c) i (yk - f ( y k ; ~ ) ) ~ D - ' y k  -f(yk;c))] +Xln(%rh).  
k=O 

(5) 

here me introduce the 'i.elocitp" y ,  and matrix &(x) 

It is the term tr i$(yk; c )  that guarantees optimal compensation of the noise-induced errors in our technique 
and that distinguish our likelihood function from those introduced in earlier work. Formally this term appears 
in path integral as a Jacobian of transformation22-24 from noise variables to dynamical ones. We emphasize, 
however, that t.his term is not. a correction, but a leading term in inference as will be shown in the following 
sections. 

Not,e, that the optimization of the log-likelihood function (5) is in general essentially nonlinear problem that 
requires extensive numerical optimization. Below we introduce parametrizat.ion that allows to avoid this problem 
for a br0a.d class of nonlinear dynamical models. In particular, a. vast majority of the model examples considered 
in the earlier work on the nonlinear dynamical inference can be solved using this technique. Moreover, a large 
number ofimportantptacticalizpplications~an .be_t_reat,ed US~IIP the same approach.--- 

~ 



2.'2. Parametrization of &he unknown vector fidd 
We pammeterize this system in the following m y .  The nonlinear vector field f(x) is written in the form 

f(xj = u(xj c E f(x: cj, (6 )  

where U(x) is an N x ,?I matris of suitably chosen basis functions {Unm(x);  .n = 1 : l'V, m = 1 : M}, and c is 
an Ad-dimensional coefficient vector. 

The choice of the base functions is not restricted t.o polynomials, &,(XI can be any suitable function. In 
genera.1 if we use B different base functions c$~(x) to model t,he system (1) the matrix U will'haxe the following 
block structure 

QB ... . . .  0 O 11 r r  d1 o ... 0 1 r 42 o . . .  o 1 1 tB 0 .. 0 

where we have B diagonal blocks of size N x A- and Af = B . N .  

f(x: c) is strictly linear in c. 

inference analytically as shown in the following section. 

-4n important feature of (6) for our subsequent development is that, while possibly highly nonlinear in x, 

Eqs. (5) and (6) are two main ingredients that allow to solve problem of nonlinear stochastic dynamical 

2.3. The algorithm 

parameters to be inferred from the measurements y. 

ppost(MIY) = const x exp[-S(MiY)]: where 

I iir v m ~ u i  air;iueiit~ { i,) aiid the matrii ekiieiits {,!Inn, 1 -. - - - - e - L - -  
b u t ; c L l l c : '  LulwALute a set AI - {c.D) of unkiiowii 

With the use of (6); substitution of the prior ppr(M) and the likelihood t(Y1.M) into (3) yields the posterior 

T 1  - -.,A.-- - 1 -  

(8) 
1 1 
2 

S(MIY) = S Y ( C ,  D) = -Py(D) - cTwy(D) + 3 C T 2 y ( D ) C .  

Here, use was made of the definitions 

K-1 

py(D) = h y: D-' y k  f K ln(det D), 
k=O 

K-1 

& y ( D j  = 26; + h U z D - l  U k :  
k=O 

where U k  U ( y k )  and the components of vector v(xj are: 

The mean values of c and D in the posterior distribution give the best estimates for the model parameters 
for-a given block of data Y of length K and providea global minimum to S y ( c ,  D). We handle this optimization 
problem in the following way. Assume for the moment that c is known in (8). Then the posterior distribution 
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over D has a mean fibost = 8y(c )  that provides a minimum to Sy(c,D) with respect to  D = DT. Its matrix 
elements are 

Alternatively. assume next that D is known. and note from (8) that in this case the posterior distribution over 
c is Gaussian. Its covariance is given by g y ( D )  and the mean cbost minimizes Sy(c. D) with respect to c 

(14) 
A-1 - 

Cbost = “ y  (D)wy(D). 

We repeat this two-step optimization procedure iteratiyely: starting from some prior values CPr and gp r .  

It can be seen that the second term in the sum on the rhs of eq. (10) originating from tr&(yk) does not vanish 
at the dynamical system attractors (l) ,  unlike the term (5) h Ur D-l y k  corresponding to the generalized 
least square optimization.2s Therefore both types of terms are required to optimally balance the effect of noise 
effect in {yk} (8) and provide the robust convergence. In the following section we analyze relative importance 
of both terms for the convergence of our algorithm. 

3. NUMERICAL EXAMPLES 
We verfied the convergence and robustness of the algorithm on a broad range of dynamical systems. In this 
paper we will be specifkally focused on the applications to the inference of coupled nonlinear oscillators. 

3.1. Five coupled oscillators 
Consider system of five locally and globally coupled van der Pol oscillators 

Xk = Yk? 
5 5 

3jk = Z k ( 1  - X2)y.k - W k x k  + v k j x ~ ,  f Y k . k - l x k - l ( t )  + Y k , k + l x k + l ( t )  + C c k j t j ,  (15) 
j=1 j=1 
i#* 

We assume for simplicity that there is no observational noise and that the observed signal is y = (yl, y2; y3: y4, ys). 
We note t,hat for the model of coupled oscillators (15) paramet.ers of the equations k k  = yk are known and do not 
have to be inferred. An example of a trajectory of (15) is shown in the figure l(a) in projection on ( q r x 2 , z 3 )  

subspace of the codiguration space of this system. We chose the following base functions 

@(I) = 51; Q(2) = ~ 1 :  ( j (3 )  = 2 2 ;  S(4) = 512; d(5) = 23; @(6) = y3; 

@(13) = 2 3 2 4 :  d(14) = 2 4 . ~ 5 ;  d(1.5) = ~ j ~ 1 :  (j(l6) = s ? Y ~ ;  d(17) = z $ Y ~ :  
4(18) = T;Y~; b(19) = X:Y*; d(20) = ~ 2 ~ 5 .  

4(7) = x4; d(8) = y4: ( ~ ( 9 )  = z5; d(l0) = y5; 6 ( H j  = z1x2; d(12) = 22x3: 

Together with the elements of the diffusion matrix we have t,o infer 115 model coefficients. Example of the 
convergence of the coefficients of the Sth oscillator to their correct values is shown in the Fig. l(b). Results of 
the corresponding convergence for the 4th oscillator are summarized in the Table 1. It can be seen from the 
Table that accuracy of estimation of the model parameters is better then 1%. Of a special interest for us is 
the compensation of the noise-induced errors. In the figure Fig. 2 we compare results of inference of one of the 
coefficients of the system (1) ~1 for two different diffusion matrices D and 2 0  where matrix 0 was chosen at. 
random 

D =  

0.0621 1.9171 0.4307 0.0356 0.3113 
0.5773 1.3597 0.3648 1.7559 0.3259 
1.9421 0.1099 0.1535 0.7051 0.6268 

A.9QlCL 1.1997 QLU4&-L444& Ll-0588- 
0.4561 0.7863 1.5776 1.9369 0.7153 
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coefficients -F4 LJ4 

true value 0.2 -0.06 
inferred value 0.199 -0.062 

0.009 0.006 std 

Figure 1. (a) A projection of a trajectory of system (15) on (XI, Z Z , X ~ )  subspace of its configuration space. (b) Conver- 
gence of the coefficients of the Jth oscillator to the true values as a function of a number of blocks of data. We have 100 
blocks of data with 800 points in each block and the sampling time h = 0.02. a1 = €1, uz = -61, u3 = -WI, a4 = 712 ,  

a5 = 7 1 3 ,  = 7714, a: = 715. a8 = 715. The convergence of the five components of the diffusion matrix is shown in the 
insert. 

- _ _  

7741 742 7743 744 "f43 745 D41 0 4 2  0 4 3  

-0.075 0.24 -0.23 -0.2 0.064 0.095 0.575 1.032 0.833 
-0.071 0 .24  -0.225 -0.19'7 0.065 0.096 0.576 1.032 0.883 
0.006 0.007 0.005 0.007 0.002 0.002 0.001 0.002 0.001 

L 

It can be shown that that without compensation term the estimator (14), (14) is reduced to the generalized 
least square (GLS) estimator. The Fig. 2 shows that the GLS estimator systematically overestimates the value 
of E I  and the larger is noise intensity the larger is the systematic error of the overestimation (see curves 1' 
and 2' for D and 2D correspondingly). By adding the term tr &(yk: c) we obtain optimal compensation of the 
noise-induced errors as shown by the curves 1 and 2 obtained for the same noise intensities. To see the effect of 
the compensation analyticalh- it is instructil-e to rewrite the sum in the eq. (10) in the integral form 

It can be seen from eq. (17) that for the attractor localized in the phase space the first integral is finite. since 
initial and final points of integration belong to the attractor. The second integral is growing when the total time 
of inference is growing. 

In particular, for a point attractor this integral is identically zero and the whole inference is due to  the 
compensating term 5 S,, v(yk)dt. This result is intuitively clear, since for the point attractor in the absence of 
noise the system will stay forever in the same point and no inference can be done. It is only noise that forces 
the system to mom about in the phase space and makes it possible to perform inference. 

T 
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Figure 2. Resuits of inference of the E ]  that were performed according to eqs. (10) - (14) (curves 1 and 2) are compared 
with the results of inference without compensating term tr &(yk; c )  (curves 1' and 2') for different noise matrices d: d = D 
for (1) and (1'); d = 2 * D for (2) and (2')  where D is given in eq. (16). 

4. INFERENCE OF TWO COUPLED OSCILLATORS FROM UNIVARIATE 
TIMESERIES DATA 

As we have mentioned in the introduction in many real experimental situations the model is not usua.1ly known 
exactly from Yirst principles" and in addition, the experimental da.ta can be extremely skewed, whereby impor- 
tar?$ "hidde~" f&~res s f  a imuadc! such a coupling co&,ients can be very d f l ~ c d t  1.0 extra.ct due to the intricate 
interplay between noise and nonlinearity. 

4 specific example of such experimental situation is inference of the strength, directionality and a degree 
of randomness of the cardiorespiratory interaction from the blood pressure signal. Such inference can provide 
valuable dia.gnostic information about the responses of the autonomous nervous system.l77 26 However, it is 
inherently difficult to dissociate a specific response from the rest of the cardiovascular interactions and the 
mechanical properties of the cardiovascular system in the intact ~rganisrn.'~ Therefore a number of numerical 
techniques were introduced to address this problem using e.g. linear approximations,28 or semi-quantitative 
estimations of either the strength of some of the nonlinear terms2' or the directiondity of ~ o u p l i n g . ~ " * ~ ~  But 
the problem remains wide open because of the complexity and nonlineariv of the cardiovascular interactions. 

It is important to notice that simulta.neous measurements of the cardiovascular signals is performed in different 
parts of the system (see e.g.15). As a consequence the nonlinear characteristics of the oscilla.tious are substantially 
modified in each signa.1 and inference of nonlinear coupling parameters has to be performed prefera.bly using 
univariate data e.g. blood pressure or blood flow signal only. The necessity t,o use univariate data in general 
poses serious limitations on the techniques of reconstruction and the problem become essentially nontrivial even 
in quasi-linear noise-free 

In this section we investigate the possibility of extending our technique of reconstruction of coupled nonlinear 
stochastic oscillators to encompass the case of inference from the univariate t.ime-series dat.a in the context of 
physiologica.1 research. We note that this is a particular example of inference of hidden dynamical variables, 
which will be addressed elsewhere. An example of the actual signal of the central venous blood pressure (record 
24 of the MGH/MF Waveform Database available at www.physionet.org). The ma.in features of the blood signal 
data is the presence of the tsvo oscillatory components at frequencies approximately fr = 0.2 Hz and fc = 1.7 
Hz corresponding to the respirat.ory and cardiac oscillations. It can also be clearly seen from the spectra that 
the nonlinear terms including terms of nonlinear interaction (a.nd cardiorespiratory interaction in particular) 
are very strong in this sample. We note that the relative intensity and posit.ion of the cardiac and respiratory 

and of the heart beat, being around 1.1 Hz. To infer coupling paramet.ers from the univariate blood pressure 
~ € s r n p o n e i i ~ s v i t r j . - g ~ ~ Q ~ ~ ~ ~ ~ ~ s a m p l e   with average ~ ~ ~ R s j L o f - t ~ ~ - ~ a ~ ~ n - . ~ ~ ~ - ~ ~ n ~ ~ ~ -  
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Figure 3. Example of the blood pressure signal (a) and of its spectrum (b) taken from the record 24 of the MGH/MF 
M’aveform Database available at www.physionet..org. 

signal an important simplifying assumption can be used. Namely it is assumed that the blood pressure signal can 
be represented as the sum of the oscillatory components with the main contributions coming from the oscillations 
of the respiration and heart.15 Accordingly we chose our surrogate data as a sum of coordinates of two coupled 
van der Pol oscillators s ( t )  = x ~ ( t )  + zZ(t). It can be seen that the spectrum of s ( t )  (Fig. 4 (c)) reproduces 
mentioned above main features of the real blood pressure signal. 

i . J = l  j=1 
j # i  

(&(t)) = 0,  (&(t)&(t’ j) = bijb(t - t’). 

Here noise ma,triv a mixes zero-mean white Gaussian noises t j ( t )  and is related to the diffusion matrix D = g.aT. 

To infer parameters of nonlinear coupling between cardiac and respiratory oscillations we decompose “mea- 
sured’’ signal s ( t )  on two oscillat,ory components using a combination of low- and high-pass Butterworth filters 
representing observations of mechanical cardiac and respiratory degrees of freedom on a discrete time grid with 
step h = 0.02 sec. Obtained in this way signals so(t) and q ( t )  are shown in t,he Fig. 4 (a) and (b) respectively.* 
To make this numerical experiment even more realistic the input signal s ( t )  was filtered before decomposition 
(using high-pass Butterworth filt,er of the Znd order wit,h cut-off frequency 0.0025 Hz) to model standard proce- 
dure of de-trending, which is used in time-series analysis of the cardiovascular sigmls to remove low frequency 
non-st,ationary trends. We now use standard embedding procedure to introduce an auxiliaxy two-dimensional 
dynamical system whose trajectory z ( t )  = (za( t ) ,  z l ( t ) )  is related t.o the observations { ~ ( t k ) }  as follows 

% ( t k  + h) - .%( tk)  

h &(tk) = 

where n = 1,2. 
respiratory limit cycles has the form (cf. with 16) 

The corresponding simplified model of the nonlinear interaction between the cardiac and 

2 2 2 
i n  = h,nsn  + 6 2 , n ~ n - l  + b3,ntn + 64:n~n- i  + k , ,n sn  + 66,nSn-l + 67 ,n~n  + h . n z i - 1  

b9,nSnSn-I $. b l O , n S n Z n  f bll,nSn&a-l + bl2,nSn-IZn + bl3,nSn-1%-1 + b l 4 , n Z n Z n - 1  

(20) 
3 3  

f b15,nSgtG, + ~IG,~S , -~ .Z ;  + &,(t) ,  n = 0; 1. 

where &(t) is a Gaussian white noise with correlation matrix Qn n ~ .  We emphasize that a number of important 
parameters of bhe decomposition of the original signal (including the bandwidth, the order of the filters) have to 

____. -. - ~ ~ Q ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ - ~ ~ i ~ ~ ~ c o r n p o n e n ~ - ~ ~ ~ i g ~ ~ . ~ ~ ~ . ~ ~ ~ ~ ~ ~  ___._ 

nents obtained using spectral decomposition with Butterworth filt.ers: so ( t )  and s l ( t ) .  



coefficients 
true value 
inferred value 

Figure 4. Comparison of the power spectra of the inferred z ( t )  components of the signal (gray lines) with the original 
signal s ( t )  (black lines): (a) a lowfrequency component, of the signal so( t )  obtained using lo~-pass Buttenvorth filter of 
the .jth order with cut-off frequency 0.55 Hz (black line) is compared with the inferred signal zo(t)(grayZine); (b) a high- 
frequency component of the signal sl ( t )  obtained high-pass Butterworth filter of the 4th order with cut-off frequency 0.55 
Hz (black line) is compared with the inferred signal zl ( t )  (gray line); (c) spectrum of the original signal s ( t )  = zl(t)+tzz(t) 
(black line) is compared with the spectrum of the inferred signal z ( t )  = zo(t)  + z l ( t ) .  

b2.l b2,2 b2.3 b2,4 b2,5 b2.6 b2,9 b2.14 b2,lfi D1 

0.05 -45.0 -0.19 0.25 0 2.55 0.2 0.11 -0.25 0.2 
0.014 -44.73 -0.071 0.17 -0.081 1.25 0.415 0.14 -0.251 0.17 

be selected to minimize the cost (8) arid provide the best fit to the measured time series { ~ ( t k ) } .  The parameters 
of the model (20) can now be inferred dxectly from the univariate “mcasured time series data s( t ) .  The 
comparison between the time series of the inferred aud actual cardiac oscillations is shown in Fig. 4 and Fig. 
5. The comparison of the inferred parameters with their actual values is suinrnarized in the Tables 2. It can 
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Figure 5. (a) Comparison of the inferred signal z(t)  = ~ ( t )  t z ( 2 )  (black solid line) with the original signal (black dotted 
line). In the insert hagments of both signals are compared with better resolution in time. (b) Comparison of the inferred 
phase space trajectory (z( t ) :  y ( t ) )  (black solid line) with the original one (black dotted line). To facilitate the comparison 
we have used the same initial conditions to generat,e phase space trajectory with exact parameters of the system and with 
inferred parameters of the system. 

be seen from the Table that the inferred parameters give correct order of the magnitude for the actual values. 
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. 
The inferred d u e s  can be further corrected taken into account attenuation of the a t e r s  at different frequencies. 
We emphasize, however. that the technique of spectral decomposition of the iimeasuredi‘ signal is in principal 
non-unique. Moreover, in the actual ex-erimentd situation the dyna.mics of the physiological oscillations is 
unknown and can be only very approximately modelled by the system of coupled oscillat.ors. Furthermore, the 
only criterion for t,he goodness of the spectral decomposition is the coincidence of the original and inferred signal 
and spectrum. For these reasons the estimation of the model parameters with the accuracy better then the 
order of magnitude does not improve the qualit,g of t.he inferred information as will be discussed in more details 
elsewhere. 

In conclusion, we suggested new technique of inference of parameters nonlinear stochastic dyna.mical system. 
The technique does not require extensive global optimization, provides optimal compensation for noise-induced 
errors and is robust in a broad range of dynamical models. We illustrate the main ideas of t.he technique by 
inferencing 115 model coefficients of five globally and locally coupled noisy oscillators within accuracy 1%. It 
is demonstrated that our technique can be readily ex*ended to solve selected problem of nonlinear stochastic 
inference of hidden dynamical variables in the cont,ext of the physiological modelling. We show in particular 
that the method allows one to estimate correct order of the magnitude of nonlinear coupling of two stochastic 
oscillators from univariate time series data. The framework of nonlinear Bayesian inference outlined in this paper 
can be further generalized to include errors of measurenieiits and to solve problem of global inference hidden 
dynamical wriables. 
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